2-Aminoacetophenone as a potential breath biomarker for Pseudomonas aeruginosa in the cystic fibrosis lung
نویسندگان
چکیده
BACKGROUND Pseudomonas aeruginosa infections are associated with progressive life threatening decline of lung function in cystic fibrosis sufferers. Growth of Ps. aeruginosa releases a "grape-like" odour that has been identified as the microbial volatile organic compound 2-aminoacetophenone (2-AA). METHODS We investigated 2-AA for its specificity to Ps. aeruginosa and its suitability as a potential breath biomarker of colonisation or infection by Solid Phase Micro Extraction and Gas Chromatography-Mass Spectrometry (GC/MS). RESULTS Cultures of 20 clinical strains of Ps. aeruginosa but not other respiratory pathogens had high concentrations of 2-AA in the head space of in vitro cultures when analysed by GC/MS. 2-AA was stable for 6 hours in deactivated glass sampling bulbs but was not stable in Tedlar® bags. Optimisation of GC/MS allowed detection levels of 2-AA to low pico mol/mol range in breath. The 2-AA was detected in a significantly higher proportion of subjects colonised with Ps. aeruginosa 15/16 (93.7%) than both the healthy controls 5/17 (29%) (p < 0.0002) and CF patients not colonised with Ps. aeruginosa 4/13(30.7%) (p < 0.001). The sensitivity and specificity of the 2-AA breath test compared to isolation of Ps. aeruginosa in sputum and/or BALF was 93.8% (95% CI, 67-99) and 69.2% (95% CI, 38-89) respectively. The peak integration values for 2-AA analysis in the breath samples were significantly higher in Ps. aeruginosa colonised subjects (median 242, range 0-1243) than the healthy controls (median 0, range 0-161; p < 0.001) and CF subjects not colonised with Ps. aeruginosa (median 0, range 0-287; p < 0.003). CONCLUSIONS Our results report 2-AA as a promising breath biomarker for the detection of Ps. aeruginosa infections in the cystic fibrosis lung.
منابع مشابه
Electrochemistry provides a point-of-care approach for the marker indicative of Pseudomonas aeruginosa infection of cystic fibrosis patients.
It has recently been demonstrated that 2-aminoacetophenone (2-AA) is a chemical indicator in exhaled air/breath of Pseudomonas aeruginosa infection associated with progressive life threatening decline of lung function in cystic fibrosis sufferers [Scott-Thomas et al., BMC Pulm. Med., 2010, 10, 56]. Currently the detection of 2-AA involves laboratory based instrumentation such as mass spectromet...
متن کاملAntibiotic Susceptibility of Pseudomonas Aeruginosa Isolated from Cystic Fibrosis Patients
Abstract Background and Objective: Cystic fibrosis (CF) is an autosomal recessive genetic disease and Pseudomonas aeruginosa is one of the most common bacteria colonized in CF patients. Growing resistance of this bacterium to antibiotics now a day is a challenge of controlling infection in CF patient. In this study colonization of CF patients with Pseudomonas aeruginosa and antibiotic suscep...
متن کاملGenetic Profiling of Pseudomonas aeruginosa Isolates from Iranian Patients with Cystic Fibrosis Using RAPD-PCR and PFGE
Objective(s) Pseudomonas aeruginosa is the most important cause of chronic lung infections and death in patients with cystic fibrosis. Determining the distribution of specific strains within patient populations is important in order to examine the epidemiology of the disease and the possibility of cross infection among patients. Materials and Methods Forty six Iranian patients with cystic fib...
متن کاملMonoallelic germline ATM mutation and organising pneumonia induced by radiation therapy to the breast.
Spectrom Rev 2005; 24: 661–700. 6 Lee TW, Brownlee KG, Conway SP, et al. Evaluation of a new definition for chronic Pseudomonas aeruginosa infection in cystic fibrosis patients. J Cyst Fibros 2003; 2: 29–34. 7 Kumar S, Huang J, Abbassi-Ghadi N, et al. Selected ion flow tube mass spectrometry analysis of exhaled breath for volatile organic compound profiling of esophago-gastric cancer. Anal Chem...
متن کاملExhaled breath hydrogen cyanide as a marker of early Pseudomonas aeruginosa infection in children with cystic fibrosis
Hydrogen cyanide is readily detected in the headspace above Pseudomonas aeruginosa cultures and in the breath of cystic fibrosis (CF) patients with chronic (P. aeruginosa) infection. We investigated if exhaled breath HCN is an early marker of P. aeruginosa infection. 233 children with CF who were free from P. aeruginosa infection were followed for 2 years. Their median (interquartile range) age...
متن کامل